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Rapid Note

Discrete scale invariance in viscous fingering patterns
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Abstract. We study viscous fingering patterns in a lifting Hele-Shaw cell, where a non-Newtonian fluid (oil
paint) is displaced by air. The lengths of the air fingers are measured and their cumulative distribution is
seen to follow a power law with log-periodic oscillations indicating the presence of discrete scale invariance.

PACS. 47.20.Ma Interfacial instability – 83.10.Ji Fluid dynamics (nonlinear fluids) – 68.10.-m Fluid
surfaces and fluid–fluid interfaces

Viscous fingering (VF) is a wellknown example of interfa-
cial instability in Laplacian growth [1].

The prototype model for producing and studying VF
is the Hele-Shaw cell [2]. The cell consists of two paral-
lel glass plates separated by a small distance (∼ mm). A
viscous fluid occupies the space between the plates. In the
radial geometry Hele-Shaw cell a less viscous fluid is forced
under pressure into the more viscous fluid, through a hole
in the centre of the upper plate. The interface between
the two fluids becomes unstable and a pattern of finger-
like intrusions is formed, whose characteristics depend on
conditions such as viscosity of the fluids, interface tension
and forcing pressure.

A variation of the conventional Hele-Shaw cell is the
lifting Hele-Shaw cell (LHSC) [3].

Patterns in the LHSC where a non-Newtonian fluid
(oil paint) is displaced by air was studied by Tarafdar and
Roy [4], Roy and Tarafdar [5].

We discuss our experimental set-up for LHSC in some
detail. The cell consists of two circular glass plates of
about 10 cm diameter. The upper plate can be raised or
lowered by a pneumatic cylinder arrangement. The two
plates are always parallel.

To generate the pattern, a blob of oil-paint is placed
at the centre of the lower plate, and the upper plate is
lowered to press down upon it. The paint spreads out with
a more or less circular outline. Now the upper plate is
raised slowly and air enters the gap, in the form of fingers,
displacing the paint. A characteristic pattern is produced
as shown in Figure 1.

It is necessary for the viscosity contrast between the
displaced and displacing fluids to be high, for the inter-
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Fig. 1. A pattern formed by air displacing oil paint in the
lifting Hele-shaw cell.

face to become unstable and form the fingering pattern.
If the displacing fluid has a high viscosity comparable to
the displaced fluid, the paint surface retracts retaining a
smooth circular perimeter. We found this to be the case
with pure glycerine displacing the paint.

Another term sometimes used for this type of modifica-
tion of the Hele-Shaw cell is ”Variable Hele-Shaw cell” or
VHSC. In a slightly different arrangement, the upper plate
is lifted from one end, using the other end as a pivot. In
this case the gap between the plates is wedge-shaped and
changes with distance from the pivot, as well as with time,
during lifting. This method of separation was used in [3]
and [6], but the arrangement is called LHSC in [3], while
[6] refers to it as VHSC, so the two terms are used almost
synonymously. In this work we call our system LHSC as
this term appears more appropriate for the parallel lifting
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Fig. 2. LogN(y) plotted against log y shows oscillations. log
denotes the natural logarithm. The straight line has a slope
−1.44.

model. In [5] both methods of lifting have been used but
the cell was referred to as VHSC.

In our patterns the most striking difference from the
conventional Hele-Shaw cell pattern is that finally the dis-
placed fluid (paint) forms the tree like structure rather
than the displacing fluid. The air fingers which enter at
the sides constitute the background. Fractal dimensions of
approximately 1.5 were found for the tree pattern by box
counting .

It has recently been shown [7] that contrary to pre-
vious ideas, naturally formed patterns may exhibit dis-
crete rather than continuous scale invariance. Whereas for
mathematical deterministic fractals scale invariance is ex-
act for a definite dilation factor λ and its integral powers
only, random fractals found in nature are expected to be
invariant for continuously varying length scales. If a de-
terministic pattern is measured on a continuously varying
length scale and the results plotted on a log-log graph,
one expects a stepped or oscillatory variation decorating
a linear power-law behaviour. But several natural systems
such as seismic activity records, DLA growth, a system
of growing cracks etc. exhibit periodic oscillations on a
log-log plot of their characteristic scale invariant quanti-
ties. This is a signature of discrete scale invariance (DSI)
governing the natural process. It implies the existence of
an underlying dilation factor which is a characteristic of
the process, in addition to the Hausdorff dimension which
describes the average power-law behaviour. It is discussed
in [7] that such systems can be equivalently described by
a complex fractal dimension, where the dilation factor λ
determines the imaginary part. If f is the frequency of the
log-periodic oscillation

f = 1/ logλ

where “log” is the natural logarithm.
The object of the present work is to demonstrate that

viscous fingering also belongs to the family of natural pro-
cesses which show DSI. It was discussed in [5] that the
paint pattern formed on displacing by air is a hierarchi-
cal pattern very similar to several other patterns found in
nature and is very regular – almost deterministic. Other

Table 1. Results for the 5 patterns studied.

Pattern no. exponent m λ from periodogram
1 −1.44 1.248

1.162
2 −1.22 1.488
3 −1.36 1.546

1.469
4 −1.29 1.088

1.193
5 −1.31 1.434

1.147

Fig. 3. An idealization of the pattern
in Figure 1.

systems where this pattern is found are river basin bound-
ary geometry [8] and growth of crystals within the pore
space in rocks [9].

In the present communication we focus on the air fin-
gers, rather than the paint pattern. We analyse the length
distribution of the air fingers and find that they follow
an approximate power law with log-periodic oscillations
characteristic of discrete scale invariance (DSI) discussed
by Sornette [7]. Five patterns have been generated and
studied, the results of analysis of the patterns is presented.

Figure 1 shows a typical pattern produced in our
LHSC. The air fingers are seen to enter at the sides dis-
placing the oil paint to form the pattern. The lengths of
the air fingers were measured ignoring any branching and
logN(y) is plotted against log y in Figure 2. Here N(y)
is the number of fingers with length ≥ y. Periodic os-
cillations are observed about the average linear fit. The
smallest and largest fingers have been omitted, these de-
viate from the average linear behaviour. A deterministic
idealized version of Figure 1 is shown in Figure 3. The
cumulative finger length distribution of Figure 3 will ob-
viously show discrete steps, which are present with some
amount of noise in the real pattern (Fig. 1). The average
linear behaviour indicates a power law

N(y) ∼ y−m.

To demonstrate more clearly the oscillations in Figure 2,
we calculated the local derivative of logN(y) with respect
to log y. A typical result is plotted in Figure 4.

A Lomb periodogram of this result is shown in Fig-
ure 5. We have constructed a histogram of the peri-
odogram results for the five patterns studied, this is shown
in Figure 6. In Table 1 we show the results of our analysis
of the five patterns. From the most prominent peaks in
the histogram of the Lomb periodogram we get λ = 1.47
and 1.25. This is considerably different from the universal
value of λ = 2 suggested in references [7,10]. A detailed
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Fig. 4. d LogN(y)/d log y plotted against logy shows the pe-
riodic oscillations more clearly.

analysis of the process of pattern formation may shed some
light on the reason for this.

The periodograms are rather noisy with a large number
of small peaks, this is probably because we have used raw
data without any smoothing filter for the results shown in
Figures 2 and 4. We shall try to improve our method of
analysis in future work. However, this preliminary investi-
gation shows interesting results, and the presence of DSI
seems quite clear. It is interesting to compare our results
with the work presented by Huang et al. [11], on DSI in a
system of cracks.

The finger length distribution in our experiment is very
similar to the results of the model suggested by Huang
et al. [11]. The growth process suggested there is as fol-
lows. If n fingers start growing initially, after a certain time
interval every alternate finger is suppressed. This causes a
period doubling of the initial growth mode. The process is
repeated regularly so that the number of growing fingers
is halved at definite intervals. Our LHSC pattern seems to
follow exactly this mechanism of growth. We have plans
to study the time development of the fingers by video-
photography to see if the dynamics agrees with the model
suggested by Huang et al. [11].

In earlier work on air-paint patterns a fractal di-
mension for the tree like paint pattern was obtained.
Non-Newtonian nature of the fluids is usually said to
incorporate non-linearity in the system and produce frac-
tal patterns [12]. In our earlier work [5], the patterns were
manually produced and looked less symmetric, there was
in addition significant branching of the air fingers, this re-
sulted in a fractal pattern. The patterns produced in the
new mechanically driven LHSC are closer to the ideal noise
free pattern of Figure 3, particularly for small sizes of the
order of ∼ 1 cm radius. In this case the paint pattern has
no non-integral fractal dimension. However the air finger
distribution gives a scale invariant behaviour with DSI
which underlines the inherent deterministic character of
the pattern.

Larger patterns produced with more paint are not as
regular and symmetric. They give a fractal dimension of
∼ 1.8 on box counting.

The authors are grateful to T.R. Middya and Prof. A.N.
Basu for encouragement in this work. We also thank Prof. D.

Fig. 5. Lomb periodogram of the data shown in Figure 4.

Fig. 6. Histogram of the periodograms for the five patterns
studied.

Chakravorty for allowing us to use the image processing equip-
ment for fractal dimension measurements.
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